소수는 1와 자신 이외에는 나누어 떨어지지 않는 수이름도 Prime numbers... 가장 이물질이 묻어있지 않은.. 순수한 숫자를 의미하기도 합니다.오일러는 소수(1,3,5,7,11)의 제곱에 1을 뺀수를 분모로, 소수의 제곱을 분자로 두고 이 수를 모두 곱하면 어떻게 될까..하는 고민을 했습니다.헐... 그랬더니, 저런 아름다운 등식이 성립한다고 가정하고 있습니다.(모든 소수를 계산한 것이 아니기 때문에 이것은 오일러의 가정이라 명명됩니다.)정말 아무런 규칙도 없어보이던 소수의 배열이었지만, 이것이 원주율의 값과 근사하다는 신기한, 아름다운 식입니다.리만은 오일러의 식에 2->X로 바꾸어 봅니다.당연히 무분별한 숫자배열인 소수니깐, 이걸 제타함수에 넣어도 이렇게 무분별한 제로점이 존재하리라는게기존의 예상헐....하지만, 그 무분별한 수열일 줄 알았던 소수의 배열을 제타함수에 넣어보니, 기존의 예상과는 다르게4개의 제로점이 모두 일진선상에 있었는데그럼 나머지 소수들도 다 마찬가지가 아닐까 라는 것이바로 리만가설입니다..지난번 페르마의 정리에서 타니야마 시무라의 "추측"과 비슷한 가설이죠..아마 이렇게 될 것이다.. 라고 추측은 하지만, 정확한 증명은 못하고 있는...그리고 고드프리 하디, 존 리틀우드가 이 제로점이 무한하다는 것을 증명합니다.제로점이 무한히 있다는 것은 증명했지만, 그 무한한 제로점이 과연 리만가설처럼 모두 일직선상에 존재하느냐는 것이 핵심...위의 그림처럼 직선외에 다른 부분에 있을 가능성도 있기 때문입니다. 영화 뷰티풀마인드의 주인공으로도 유명하신 분..게임이론으로 유명하신 분이지만, 리만가설에도 많은 연구를 하셨네요그런데, 리만가설을 연구하시다가 정신적인 이상증세를 보이자..사람들이 연구자체를 꺼려하게됨... 여기서 물리학자와 수학자 한사람이 만나게 됩니다. 한명은 물리학자 프리먼 다이슨 박사고다른한명은 수학자 몽고메리 박사입니다.아무 규칙없어 보이는 소수랑 아무 생각없이 흔들리는 원자핵 주변의 전자를 구하는 공식이 같다는 결론에 도달합니다...소수와 원자... 가장 순수한 수라는 소수와 만물의 기본 입자라는 원자......무언가 희열이 느껴지지않나요?? <제로점 간격 수식과 원자핵 에너지 레벨 간격 수식>지금 리만가설과 관련해서 많은수학자와 물리학자들이 공동으로 학자들이 연구중입니다..레온하르트 오일러그는 소수와 우주 사이에 중요한 관계가 있다는 직감을 갖고 있었다. 소수만을 이용한 식을 통해 무질서한 소수의 집합이 원과 관련이 있다는 걸 밝혀냈다.<소수만을 사용한 오일러의 식>베른하르트 리만의 가설약 100년 뒤, 리만은 소수의 오일러의 식을 응용한 제타함수를 고안한다.<리만의 제타함수>제타함수를 그래프로 나타내면,그래프의 높이가 0인 제로점이 존재한다.소수 배열이 불규칙하기에 제로점 역시 아래와 같이 불규칙할 것이라는 당초의 예상. 그러나,리만이 찾아낸 4개의 제로점은 예상을 뒤집고 정확히 일직선상에 놓여있었다.이것이 리만 가설(1859년).제타함수의 비자명적인 제로점은 모두 일직선상에 있다.리만 가설은 소수의 배열에 의미가 있다는 것에 대한 수학적인 입증이 될 수 있다."소수의 배열에 의미가 있는가?" 라는 그때까지 막연했던 물음을 "모든 제로점은 일직선상에 있는가?" 라는 수학의 문제로 바꾼 것이다. 이후 소수를 연구하는 수학자들은 리만 가설의 입증에 집중한다.아직 발견되지 않은 다른 모든 제로점 역시 일직선상에 있다면, 소수에 이상적이고 완벽한 조화가 있다는 것을 의미하기 때문이다.그리고 이것을 표현하는 식과 원자핵 주변의 전자를 구하는 공식과 일치한다.실로 놀라운 발견이 아닐 수 없다..